Ela Positive Semidefinite Maximum Nullity and Zero Forcing Number
نویسندگان
چکیده
The zero forcing number Z(G) is used to study the minimum rank/maximum nullity of the family of symmetric matrices described by a simple, undirected graph G. The positive semidefinite zero forcing number is a variant of the (standard) zero forcing number, which uses the same definition except with a different color-change rule. The positive semidefinite maximum nullity and zero forcing number for a variety of graph families are computed. In addition, field independence of the minimum rank of the hypercube is established, by showing there is a positive semidefinite matrix that is universally optimal.
منابع مشابه
Ela Note on Positive Semidefinite Maximum Nullity and Positive Semidefinite Zero Forcing Number of Partial 2-trees
The maximum positive semidefinite nullity of a multigraph G is the largest possible nullity over all real positive semidefinite matrices whose (i, j)th entry (for i 6= j) is zero if i and j are not adjacent in G, is nonzero if {i, j} is a single edge, and is any real number if {i, j} is a multiple edge. The definition of the positive semidefinite zero forcing number for simple graphs is extende...
متن کاملPositive semidefinite maximum nullity and zero forcing number
The zero forcing number Z(G) is used to study the minimum rank/maximum nullity of the family of symmetric matrices described by a simple, undirected graph G. The positive semidefinite zero forcing number is a variant of the (standard) zero forcing number, which uses the same definition except with a different color-change rule. The positive semidefinite maximum nullity and zero forcing number f...
متن کاملEla Minimum Rank, Maximum Nullity, and Zero Forcing Number of Simple Digraphs
A simple digraph describes the off-diagonal zero-nonzero pattern of a family of (not necessarily symmetric) matrices. Minimum rank of a simple digraph is the minimum rank of this family of matrices; maximum nullity is defined analogously. The simple digraph zero forcing number is an upper bound for maximum nullity. Cut-vertex reduction formulas for minimum rank and zero forcing number for simpl...
متن کاملZero forcing parameters and minimum rank problems
Abstract. The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a 1 graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by 2 G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive 3 semidefinite zero forcing number Z+(G) is introduced, and ...
متن کاملEla the Maximum Nullity of a Complete Subdivision Graph Is Equal to Its Zero Forcing Number∗
Barrett et al. asked in [W. Barrett et al. Minimum rank of edge subdivisions of graphs. Electronic Journal of Linear Algebra, 18:530–563, 2009.], whether the maximum nullity is equal to the zero forcing number for all complete subdivision graphs. We prove that this equality holds. Furthermore, we compute the value of M(F, G̊) = Z(G̊) by introducing the bridge tree of a connected graph. Since this...
متن کامل